By Topic

Application of genetic-based neural networks to thermal unit commitment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shyh-Jier-Huang ; Dept. of Electr. Eng., Kaohsiung Polytech. Inst., Taiwan ; Shyh-Jier Huang

A new approach using genetic algorithms based neural networks and dynamic programming (GANN-DP) to solve power system unit commitment problems is proposed in this paper. A set of feasible generator commitment schedules is first formulated by genetic-enhanced neural networks. These pre-committed schedules are then optimized by the dynamic programming technique. By the proposed approach, learning stagnation is avoided. The neural network stability and accuracy are significantly increased. The computational performance of unit commitment in a power system is therefore highly improved. The proposed method has been tested on a practical Taiwan Power (Taipower) thermal system through the utility data. The results demonstrate the feasibility and practicality of this approach

Published in:

Power Systems, IEEE Transactions on  (Volume:12 ,  Issue: 2 )