By Topic

Adaptive Forward-Backward Greedy Algorithm for Learning Sparse Representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tong Zhang ; Statistics Department, Rutgers University, New Jersey, USA

Given a large number of basis functions that can be potentially more than the number of samples, we consider the problem of learning a sparse target function that can be expressed as a linear combination of a small number of these basis functions. We are interested in two closely related themes: · feature selection, or identifying the basis functions with nonzero coefficients; · estimation accuracy, or reconstructing the target function from noisy observations. Two heuristics that are widely used in practice are forward and backward greedy algorithms. First, we show that neither idea is adequate. Second, we propose a novel combination that is based on the forward greedy algorithm but takes backward steps adaptively whenever beneficial. For least squares regression, we develop strong theoretical results for the new procedure showing that it can effectively solve this problem under some assumptions. Experimental results support our theory.

Published in:

IEEE Transactions on Information Theory  (Volume:57 ,  Issue: 7 )