By Topic

Robust Communication via Decentralized Processing With Unreliable Backhaul Links

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Simeone, O. ; CWCSPR, New Jersey Inst. of Technol., Newark, NJ, USA ; Somekh, O. ; Erkip, E. ; Poor, H.V.
more authors

A source communicates with a remote destination via a number of distributed relays. Communication from source to relays takes place over a (discrete or Gaussian) broadcast channel, while the relays are connected to the receiver via orthogonal finite-capacity links. Unknowns to the source and relays, link failures may occur between any subset of relays and the destination in a nonergodic fashion. Upper and lower bounds are derived on average achievable rates with respect to the prior distribution of the link failures, assuming the relays to be oblivious to the source codebook. The lower bounds are obtained by proposing strategies that combine the broadcast coding approach, previously investigated for quasi-static fading channels, and different robust distributed compression techniques. Numerical results show that lower and upper bounds are quite close over most operating regimes, and provide insight into optimal transmission design choices for the scenario at hand. Extension to the case of nonoblivious relays is also discussed.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 7 )