By Topic

A new transducer receive transfer function calibration method: application to microbubble backscattering cross-section measurements at high frequency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sprague, M.R. ; Dept. of Med. Biophys., Univ. of Toronto, Toronto, ON, Canada ; Cherin, E. ; Foster, F.S.

When comparing acoustic scattering experiments with theory, the relationship between the pressure generated by a scatterer at the surface of a transducer and the induced voltage must be known. Methods have been previously proposed to measure the receive transfer function that rely on several assumptions. A new, experimental method for measuring the acoustic response of a spherically-focused transducer, using a hydrophone at twice the focal distance, is proposed that requires a minimum number of assumptions and calculations. The receive transfer function of a spherically-focused, high-frequency transducer was calculated, and found to be within 10% of the receive transfer function calculated assuming reciprocity. Further, using the receive transfer function, the effective backscattering cross-section of bound microbubbles interrogated at 30 MHz was measured to be, on average, 65% of the geometric backscattering cross-section, with significant size-independent variability. These results give insight into selecting the optimal microbubble size distribution for linear microbubble imaging at high frequencies.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:58 ,  Issue: 6 )