By Topic

Analyzing Image Deblurring Through Three Paradigms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chao Wang ; Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China ; Lifeng Sun ; Peng Cui ; Jianwei Zhang
more authors

To recover a sharp version from a blurred image is a long-standing inverse problem. In this paper, we analyze the research on this topic both theoretically and experimentally through three paradigms: 1) the deterministic filter; 2) Bayesian estimation; and 3) the conjunctive deblurring algorithm (CODA), which performs the deterministic filter and Bayesian estimation in a conjunctive manner. We point out the weaknesses of the deterministic filter and unify the limitation latent in two kinds of Bayesian estimators. We further explain why the CODA is able to handle quite large blurs beyond Bayesian estimation. Finally, we propose a novel method to overcome several unreported limitations of the CODA. Although extensive experiments demonstrate that our method outperforms state-of-the-art methods with a large margin, some common problems of image deblurring still remain unsolved and should attract further research efforts.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 1 )