By Topic

Gossip Algorithms for Convex Consensus Optimization Over Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jie Lu ; Sch. of Electr. & Comput. Eng., Univ. of Oklahoma, Norman, OK, USA ; Choon Yik Tang ; Paul R. Regier ; Travis D. Bow

In many applications, nodes in a network desire not only a consensus, but an optimal one. To date, a family of subgradient algorithms have been proposed to solve this problem under general convexity assumptions. This technical note shows that, for the scalar case and by assuming a bit more, novel non-gradient-based algorithms with appealing features can be constructed. Specifically, we develop Pairwise Equalizing (PE) and Pairwise Bisectioning (PB), two gossip algorithms that solve unconstrained, separable, convex consensus optimization problems over undirected networks with time-varying topologies, where each local function is strictly convex, continuously differentiable, and has a minimizer. We show that PE and PB are easy to implement, bypass limitations of the subgradient algorithms, and produce switched, nonlinear, networked dynamical systems that admit a common Lyapunov function and asymptotically converge. Moreover, PE generalizes the well-known Pairwise Averaging and Randomized Gossip Algorithm, while PB relaxes a requirement of PE, allowing nodes to never share their local functions.

Published in:

IEEE Transactions on Automatic Control  (Volume:56 ,  Issue: 12 )