By Topic

Uniform Robust Exact Differentiator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cruz-Zavala, E. ; Inst. de Ing., Univ. Nac. Autonoma de Mexico (UNAM), Coyoacan, Mexico ; Moreno, J.A. ; Fridman, L.M.

The differentiators based on the Super-Twisting Algorithm (STA) yield finite-time and theoretically exact convergence to the derivative of the input signal, whenever this derivative is Lipschitz. However, the convergence time grows unboundedly when the initial conditions of the differentiation error grow. In this technical note a Uniform Robust Exact Differentiator (URED) is introduced. The URED is based on a STA modification and includes high-degree terms providing finite-time, and exact convergence to the derivative of the input signal, with a convergence time that is bounded by some constant independent of the initial conditions of the differentiation error. Strong Lyapunov functions are used to prove the convergence of the URED.

Published in:

Automatic Control, IEEE Transactions on  (Volume:56 ,  Issue: 11 )