Cart (Loading....) | Create Account
Close category search window

Stability-Preserving Optimization in the Presence of Fast Disturbances

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wirth, B. ; AVT-Process Syst. Eng., RWTH Aachen Univ., Aachen, Germany ; Gerhard, J. ; Marquardt, W.

We present algebraic conditions on the trajectory of a dynamical system to approximately describe a certain type of system robustness. The corresponding equations can be used as constraints in a robust optimization procedure to select a set of optimal design parameters for a dynamical system which is subject to fast disturbances. Robustness is ensured by requiring the disturbance parameters to stay sufficiently far away from critical manifolds in the disturbance parameter space, at which the system would lose stability. The closest distance to the critical manifolds is measured along their normal vectors.

Published in:

Automatic Control, IEEE Transactions on  (Volume:56 ,  Issue: 11 )

Date of Publication:

Nov. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.