Cart (Loading....) | Create Account
Close category search window

Augmented Lagrangian Approach to Design of Structured Optimal State Feedback Gains

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fu Lin ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Fardad, M. ; Jovanovic, M.R.

We consider the design of optimal state feedback gains subject to structural constraints on the distributed controllers. These constraints are in the form of sparsity requirements for the feedback matrix, implying that each controller has access to information from only a limited number of subsystems. The minimizer of this constrained optimal control problem is sought using the augmented Lagrangian method. Notably, this approach does not require a stabilizing structured gain to initialize the optimization algorithm. Motivated by the structure of the necessary conditions for optimality of the augmented Lagrangian, we develop an alternating descent method to determine the structured optimal gain. We also utilize the sensitivity interpretation of the Lagrange multiplier to identify favorable communication architectures for structured optimal design. Examples are provided to illustrate the effectiveness of the developed method.

Published in:

Automatic Control, IEEE Transactions on  (Volume:56 ,  Issue: 12 )

Date of Publication:

Dec. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.