By Topic

Over 10 W Output Linearly-Polarized Single-Stage Fiber Laser Oscillating Above 1160 nm Using Yb-Doped Polarization-Maintaining Solid Photonic Bandgap Fiber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Kashiwagi, M. ; Opt. & Electron. Lab., Fujikura Ltd., Sarkura, Japan ; Takenaga, K. ; Ichii, K. ; Kitabayashi, T.
more authors

We propose an all-fiber linearly-polarized single-stage fiber laser oscillating above 1160 nm employing a low-loss Yb-doped polarization-maintaining solid photonic bandgap fiber (Yb-PM-SPGF) as a laser source for a yellow-orange frequency-doubling laser. We also present a new fabrication method for Yb-PM-SPBGF to reduce fiber attenuation in its photonic bandgap for increasing laser output power and improving slope efficiency. The attenuation of a fabricated Yb-PM-SPBGF is below 20 dB/km at 1180 nm, which is as low as that of a conventional Yb-doped fiber. All-fiber linearly-polarized single-stage fiber laser oscillating at 1180 nm using the fabricated Yb-PM-SPBGF is demonstrated. ASE and parasitic lasing in the wavelength range from 1030 nm to 1130 nm are suppressed and eliminated thanks to the filtering effect of the fiber. A 10.8 W output power is successfully achieved with a slope efficiency of 56% and a conversion efficiency of 50% by high-power 976 nm pumping. A spectral width of less than 0.05 nm, a polarization extinction ratio of more than 20 dB and nearly diffraction limited beam quality in output light are achieved. These results indicate that our proposed fiber laser can realize a compact and high-power yellow-orange frequency-doubling laser.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:47 ,  Issue: 8 )