By Topic

Partial transmit sequences based on artificial bee colony algorithm for peak-to-average power ratio reduction in multicarrier code division multiple access systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
N. Taşp̧nar ; Department of Electrical and Electronic Engineering, Erciyes University, Kayseri, Turkey ; D. Karaboǧa ; M. Yıldırım ; B. Akay

Multicarrier code division multiple access (MC-CDMA) is a very promising system for wireless communication. However, MC-CDMA signals have a high peak-to-average power ratio (PAPR), which causes signal distortion because of the use of a high-power amplifier (HPA) in the transmitter. Partial transmit sequences (PTSs) represent one of the most attractive PAPR reduction methods, but its high computational complexity in finding the optimal phase vector impedes practical implementation. In this paper, we propose a PTS based on an artificial bee colony (ABC) algorithm scheme (ABC-PTS) to reduce the computational complexity of the PTS in the MC-CDMA systems. Simulation results prove that the proposed ABC-PTS scheme shows a significant improvement in PAPR reduction performance, with a low computational complexity. In addition, the bit-error-rate performance of the MC-CDMA with the ABC-PTS and the conventional PTS is compared when the HPA and the linear amplifier are used.

Published in:

IET Communications  (Volume:5 ,  Issue: 8 )