By Topic

Trajectory Tracking of a Nonholonomic Mobile Robot with Kinematic Disturbances: A Variable Structure Control Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

In this paper, a trajectory tracking control for a nonholonomic mobile robot subjected to kinematic disturbances is proposed. A variable structure controller based on the sliding mode theory is designed, and applied to compensate these disturbances. To minimize the problems found in practical implementations of the classical variable structure controllers, and eliminate the chattering phenomenon, is used a neural compensator, which is nonlinear and continuous, in lieu of the discontinuous portion of the control signals present in classical forms. This proposed neural compensator is designed by the Gaussian radial basis function neural networks modeling technique and it does not require the time-consuming training process. Stability analysis is guaranteed based on the Lyapunov method. Simulation results are provided to show the effectiveness of the proposed approach.

Published in:

Latin America Transactions, IEEE (Revista IEEE America Latina)  (Volume:9 ,  Issue: 3 )