Cart (Loading....) | Create Account
Close category search window
 

An Instant-Startup Jitter-Tolerant Manchester-Encoding Serializer/Deserializer Scheme for Event-Driven Bit-Serial LVDS Interchip AER Links

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zamarrefio-Ramos, C. ; Inst. de Microelectron. de Sevilla (IMSE-CNM-CSIC), Sevilla, Spain ; Serrano-Gotarredona, T. ; Linares-Barranco, B.

This paper presents a serializer/deserializer scheme for asynchronous address event representation (AER) bit-serial interchip communications. Each serial AER (sAER) link uses four wires: a micro strip pair for low voltage differential signaling (LVDS) and two handshaking lines. Each event is represented by a 32-bit word. Two extra preamble bits are used for alignment. Transmission clock is embedded in the data using Manchester encoding. As opposed to conventional LVDS links, the presented approach allows to stop physical communication between data events, so that no “comma” characters need to be transmitted during these pauses. As soon as a new event needs to be transmitted, the link recovers immediately thanks to a built-in control voltage memorization circuit. As a result, power consumption of the serializer and deserializer circuits is proportional to data event rate. The approach is also highly tolerant to clock jitter, due to the asynchronous nature and the Manchester encoding. A chip test prototype has been fabricated in standard 0.35 μm CMOS including a pair of Serializer and Deserializer circuits. Maximum measured event transmission rate is 15 Meps (mega events per second) for 32-bit events, with a maximum bit transmission speed of 670 Mbps (mega bits per second).

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:58 ,  Issue: 11 )

Date of Publication:

Nov. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.