Cart (Loading....) | Create Account
Close category search window
 

Application of Independent Component Analysis With Adaptive Density Model to Complex-Valued fMRI Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hualiang Li ; Dept. of Comput. Sci. & Electr. Eng., Univ. of Maryland, Baltimore, MD, USA ; Correa, N.M. ; Rodriguez, P.A. ; Calhoun, V.D.
more authors

Independent component analysis (ICA) has proven quite useful for the analysis of real world datasets such as functional resonance magnetic imaging (fMRI) data, where the underlying nature of the data is hard to model. It is particularly useful for the analysis of fMRI data in its native complex form since very little is known about the nature of phase. Phase information has been discarded in most analyses as it is particularly noisy. In this paper, we show that a complex ICA approach using a flexible nonlinearity that adapts to the source density is the more desirable one for performing ICA of complex fMRI data compared to those that use fixed nonlinearity, especially when noise level is high. By adaptively matching the underlying fMRI density model, the analysis performance can be improved in terms of both the estimation of spatial maps and the task-related time courses, especially for the estimation of phase of the time course. We also define a procedure for analysis and visualization of complex-valued fMRI results, which includes the construction of bivariate t-maps for multiple subjects and a complex-valued ICASSO scheme for evaluating the consistency of ICA algorithms.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.