By Topic

Merging Photonic Wire Lasers and Nanoantennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ziyuan Li ; School of Engineering and Information Technology (SEIT) The University of New South Wales at the Australian Defence Force Academy (UNSW@ADFA), Canberra ACT, Australia ; Haroldo T. Hattori ; Lan Fu ; Hark Hoe Tan
more authors

One of the main goals of photonic integration is to combine different components that are capable of executing different functions. One of these functions is the generation of light: in this sense, photonic wire lasers may become a key component in future generations of integrated circuits because of their small footprints. Another is the generation of high-intensity electric fields that can be used to excite nonlinear effects, such as surface-enhanced Raman scattering, or to visualize nano-objects, in small regions and can be achieved by using plasmonic nanoantennas. In this paper, the combination of photonic wire lasers and plasmonic nanoantennas is examined. We show that a very compact photonic wire nanoantenna laser, which generates a high-intensity electric field inside the nanoantenna, can be produced.

Published in:

Journal of Lightwave Technology  (Volume:29 ,  Issue: 18 )