Cart (Loading....) | Create Account
Close category search window
 

Low-cost industrial technologies of crystalline silicon solar cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Approximately 2 billion people, mainly in Third World countries, are not connected to an electric grid. The standard, centralized grid development is too expensive and time consuming to solve the energy demand problem. Therefore, there is a need for decentralized renewable energy sources. The main attractiveness of solar cells is that they generate electricity directly from sunlight and can be mounted in modular, stand-alone photovoltaic (PV) systems. Particular attention is paid in this paper to crystalline silicon solar cells, since bulk silicon solar-cell (mono and multi) modules comprise approximately 85% of all worldwide PV module shipments. Energy conversion efficiency as high as 24% has been achieved on laboratory, small-area monocrystalline silicon cells, whereas the typical efficiency of industrial crystalline silicon solar cells is in the range of 13-16%. The market price of PV modules remains for the last few years in the range of $3.5-4.5/watt peak (Wp). For the photovoltaic industry, the biggest concern is to improve the efficiency and decrease the price of the commercial PV modules. Efficiency-enhancement techniques of commercial cells are described in detail. Adaptation of many high-efficiency features to industrially fabricated solar cells. The latest study shows that increasing the PV market size toward 500 MWp/y and accounting for realistic industrial improvements can lead to a drastic PV module price reduction down to $1/Wp

Published in:

Proceedings of the IEEE  (Volume:85 ,  Issue: 5 )

Date of Publication:

May 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.