By Topic

Fully Constrained Least Squares Spectral Unmixing by Simplex Projection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rob Heylen ; Interdisciplinary Institute for Broadband Technology (IBBT), Visionlab, Department of Physics, University of Antwerp, Antwerp, Belgium ; Dževdet Burazerovic ; Paul Scheunders

We present a new algorithm for linear spectral mixture analysis, which is capable of supervised unmixing of hyperspectral data while respecting the constraints on the abundance coefficients. This simplex-projection unmixing algorithm is based upon the equivalence of the fully constrained least squares problem and the problem of projecting a point onto a simplex. We introduce several geometrical properties of high-dimensional simplices and combine them to yield a recursive algorithm for solving the simplex-projection problem. A concrete implementation of the algorithm for large data sets is provided, and the algorithm is benchmarked against well-known fully constrained least squares unmixing (FCLSU) techniques, on both artificial data sets and real hyperspectral data collected over the Cuprite mining region. Unlike previous algorithms for FCLSU, the presented algorithm possesses no optimization steps and is completely analytical, severely reducing the required processing power.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:49 ,  Issue: 11 )