Cart (Loading....) | Create Account
Close category search window
 

Transport Physics and Device Modeling of Zinc Oxide Thin-Film Transistors Part I: Long-Channel Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Torricelli, F. ; Dept. of Inf. Eng., Univ. of Brescia, Brescia, Italy ; Meijboom, J.R. ; Smits, E. ; Tripathi, A.K.
more authors

Thin-film transistors (TFTs), which use zinc oxide (ZnO) as an active layer, were fabricated and investigated in detail. The transport properties of ZnO deposited by spray pyrolysis (SP) on a TFT structure are studied in a wide range of temperatures, electrical conditions (i.e., subthreshold, above-threshold linear, and saturation regions), and at different channel lengths. It is shown that ZnO deposited by SP is a nanocrystalline material; its field-effect mobility is temperature activated and increases with carrier concentration. On the basis of this analysis, we propose the multiple-trapping-and-release (MTR)-transport mechanism to describe the charge transport in ZnO. By means of numerical simulations, we prove that MTR is a suitable approach, and we calculate the density of states. We show that the tail states extend in a wide range of energy and that they strongly influence the transport properties. Finally, an analytical physical-based DC model is proposed and validated with experiments and numerical simulations. The model is able to reproduce the measurements on devices with different channel length in a wide range of bias voltages and temperatures by means of a restricted number of parameters, which are linked directly to the physical properties of the ZnO semiconductor. For the first time, the charge transport in the ZnO is investigated by means of the MTR, and a consistent analysis based on experiments, numerical simulations, and analytical modeling is provided.

Published in:

Electron Devices, IEEE Transactions on  (Volume:58 ,  Issue: 8 )

Date of Publication:

Aug. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.