By Topic

Efficient Iterative Time-Domain Beam Propagation Methods for Ultra Short Pulse Propagation: Analysis and Assessment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Masoudi, H.M. ; Dept. of Electr. Eng., King Fahd Univ. of Pet. & Miner., Dhahran, Saudi Arabia ; Akond, M.S.

The time-domain beam propagation method (TD-BPM) has been implemented and analyzed using several iterative numerical techniques to model the propagation of ultra short pulses in optical structures. The methods depend on one-way non-paraxial time domain propagation that use Pade approximant formulation. Several numerical tests showed that the iterative TD-BPM techniques are very stable and converge using few iterations. From accuracy assessment compared to the FDTD, it has been observed that the longitudinal and the temporal steps sizes can be a number of orders of magnitude larger than the FDTD step sizes with little percentage difference. Computer performance analysis showed the TD-BPM is well suited for long dielectric structures interaction of short and ultra short pulse propagation.

Published in:

Lightwave Technology, Journal of  (Volume:29 ,  Issue: 16 )