Cart (Loading....) | Create Account
Close category search window

Unconstrained Pose-Invariant Face Recognition Using 3D Generic Elastic Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Prabhu, U. ; Electr. & Comput. Eng. Dept., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Jingu Heo ; Savvides, M.

Classical face recognition techniques have been successful at operating under well-controlled conditions; however, they have difficulty in robustly performing recognition in uncontrolled real-world scenarios where variations in pose, illumination, and expression are encountered. In this paper, we propose a new method for real-world unconstrained pose-invariant face recognition. We first construct a 3D model for each subject in our database using only a single 2D image by applying the 3D Generic Elastic Model (3D GEM) approach. These 3D models comprise an intermediate gallery database from which novel 2D pose views are synthesized for matching. Before matching, an initial estimate of the pose of the test query is obtained using a linear regression approach based on automatic facial landmark annotation. Each 3D model is subsequently rendered at different poses within a limited search space about the estimated pose, and the resulting images are matched against the test query. Finally, we compute the distances between the synthesized images and test query by using a simple normalized correlation matcher to show the effectiveness of our pose synthesis method to real-world data. We present convincing results on challenging data sets and video sequences demonstrating high recognition accuracy under controlled as well as unseen, uncontrolled real-world scenarios using a fast implementation.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 10 )
Biometrics Compendium, IEEE

Date of Publication:

Oct. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.