By Topic

A Space-Filling Visualization Technique for Multivariate Small-World Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Pak Chung Wong ; Pacific Northwest Nat. Lab., Richland, WA, USA ; Foote, H. ; Mackey, P. ; Chin, G.
more authors

We introduce an information visualization technique, known as GreenCurve, for large multivariate sparse graphs that exhibit small-world properties. Our fractal-based design approach uses spatial cues to approximate the node connections and thus eliminates the links between the nodes in the visualization. The paper describes a robust algorithm to order the neighboring nodes of a large sparse graph by solving the Fiedler vector of its graph Laplacian, and then fold the graph nodes into a space-filling fractal curve based on the Fiedler vector. The result is a highly compact visualization that gives a succinct overview of the graph with guaranteed visibility of every graph node. GreenCurve is designed with the power grid infrastructure in mind. It is intended for use in conjunction with other visualization techniques to support electric power grid operations. The research and development of GreenCurve was conducted in collaboration with domain experts who understand the challenges and possibilities intrinsic to the power grid infrastructure. The paper reports a case study on applying GreenCurve to a power grid problem and presents a usability study to evaluate the design claims that we set forth.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:18 ,  Issue: 5 )