By Topic

An Intelligent Task Allocation Scheme for Multihop Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yichao Jin ; Center for Commun. Syst. Res., Univ. of Surrey, Guildford, UK ; Jiong Jin ; Gluhak, A. ; Moessner, K.
more authors

Emerging applications in Multihop Wireless Networks (MHWNs) require considerable processing power which often may be beyond the capability of individual nodes. Parallel processing provides a promising solution, which partitions a program into multiple small tasks and executes each task concurrently on independent nodes. However, multihop wireless communication is inevitable in such networks and it could have an adverse effect on distributed processing. In this paper, an adaptive intelligent task mapping together with a scheduling scheme based on a genetic algorithm is proposed to provide real-time guarantees. This solution enables efficient parallel processing in a way that only possible node collaborations with cost-effective communications are considered. Furthermore, in order to alleviate the power scarcity of MHWN, a hybrid fitness function is derived and embedded in the algorithm to extend the overall network lifetime via workload balancing among the collaborative nodes, while still ensuring the arbitrary application deadlines. Simulation results show significant performance improvement in various testing environments over existing mechanisms.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:23 ,  Issue: 3 )