By Topic

Matching 3-D line segments with applications to multiple-object motion estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. H. Chen ; Coordinated Sci. Lab., Illinois Univ., Urbana, IL, USA ; T. S. Huang

A two-stage algorithm for matching line segments using three-dimensional data is presented. In the first stage, a tree-search based on the orientation of the line segments is applied to establish potential matches. the sign ambiguity of line segments is fixed by a simple congruency constraint. In the second stage, a Hough clustering technique based on the position of line segments is applied to verify potential matches. Any paired line segments of a match that cannot be brought to overlap by the translation determined by the clustering are removed from the match. Unlike previous methods, this algorithm combats noise more effectively, and ensures the global consistency of a match. While the original motivation for the algorithm is multiple-object motion estimation from stereo image sequences, the algorithm can also be applied to other domains, such as object recognition and object model construction from multiple views

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:12 ,  Issue: 10 )