By Topic

Image segmentation by unifying region and boundary information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haddon, J.F. ; R. Aerosp. Establ., Farnborough, UK ; Boyce, J.F.

A two-stage method of image segmentation based on gray level cooccurrence matrices is described. An analysis of the distributions within a cooccurrence matrix defines an initial pixel classification into both region and interior or boundary designations. Local consistency of pixel classification is then implemented by minimizing the entropy of local information, where region information is expressed via conditional probabilities estimated from the cooccurrence matrices, and boundary information via conditional probabilities which are determined a priori. The method robustly segments an image into homogeneous areas and generates an edge map. The technique extends easily to general edge operators. An example is given for the Canny operator. Applications to synthetic and forward-looking infrared (FLIR) images are given

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:12 ,  Issue: 10 )