By Topic

Uniform dynamic self-stabilizing leader election

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dolev, S. ; Dept. of Math. & Comput. Sci., Ben-Gurion Univ. of the Negev, Beer-Sheva, Israel ; Israeli, Amos ; Moran, S.

A distributed system is self-stabilizing if it can be started in any possible global state. Once started the system regains its consistency by itself, without any kind of outside intervention. The self-stabilization property makes the system tolerant to faults in which processors exhibit a faulty behavior for a while and then recover spontaneously in an arbitrary state. When the intermediate period in between one recovery and the next faulty period is long enough, the system stabilizes. A distributed system is uniform if all processors with the same number of neighbors are identical. A distributed system is dynamic if it can tolerate addition or deletion of processors and links without reinitialization. In this work, we study uniform dynamic self-stabilizing protocols for leader election under readwrite atomicity. Our protocols use randomization to break symmetry. The leader election protocol stabilizes in O(ΔD log n) time when the number of the processors is unknown and O(ΔD), otherwise. Here Δ denotes the maximal degree of a node, D denotes the diameter of the graph and n denotes the number of processors in the graph. We introduce self-stabilizing protocols for synchronization that are used as building blocks by the leader-election algorithm. We conclude this work by presenting a simple, uniform, self-stabilizing ranking protocol

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:8 ,  Issue: 4 )