Cart (Loading....) | Create Account
Close category search window
 

Extracting reusable functions by flow graph based program slicing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lanubile, F. ; Dept. of Comput. Sci., Maryland Univ., College Park, MD, USA ; Visaggio, G.

An alternative approach to developing reusable components from scratch is to recover them from existing systems. We apply program slicing, a program decomposition method, to the problem of extracting reusable functions from ill structured programs. As with conventional slicing first described by M. Weiser (1984), a slice is obtained by iteratively solving data flow equations based on a program flow graph. We extend the definition of program slice to a transform slice, one that includes statements which contribute directly or indirectly to transform a set of input variables into a set of output variables. Unlike conventional program slicing, these statements do not include either the statements necessary to get input data or the statements which test the binding conditions of the function. Transform slicing presupposes the knowledge that a function is performed in the code and its partial specification, only in terms of input and output data. Using domain knowledge we discuss how to formulate expectations of the functions implemented in the code. In addition to the input/output parameters of the function, the slicing criterion depends on an initial statement, which is difficult to obtain for large programs. Using the notions of decomposition slice and concept validation we show how to produce a set of candidate functions, which are independent of line numbers but must be evaluated with respect to the expected behavior. Although human interaction is required, the limited size of candidate functions makes this task easier than looking for the last function instruction in the original source code

Published in:

Software Engineering, IEEE Transactions on  (Volume:23 ,  Issue: 4 )

Date of Publication:

Apr 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.