Cart (Loading....) | Create Account
Close category search window
 

A quantitative model of the security intrusion process based on attacker behavior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jonsson, E. ; Dept. of Comput. Eng., Chalmers Univ. of Technol., Goteborg, Sweden ; Olovsson, T.

The paper is based on a conceptual framework in which security can be split into two generic types of characteristics, behavioral and preventive. Here, preventive security denotes the system's ability to protect itself from external attacks. One way to describe the preventive security of a system is in terms of its interaction with the alleged attacker, i.e., by describing the intrusion process. To our knowledge, very little is done to model this process in quantitative terms. Therefore, based on empirical data collected from intrusion experiments, we have worked out a hypothesis on typical attacker behavior. The hypothesis suggests that the attacking process can be split into three phases: the learning phase, the standard attack phase, and the innovative attack phase. The probability for successful attacks during the learning and innovative phases is expected to be small, although for different reasons. During the standard attack phase it is expected to be considerably higher. The collected data indicates that the breaches during the standard attack phase are statistically equivalent and that the times between breaches are exponentially distributed. This would actually imply that traditional methods for reliability modeling could be applicable

Published in:

Software Engineering, IEEE Transactions on  (Volume:23 ,  Issue: 4 )

Date of Publication:

Apr 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.