By Topic

Multiaccess mesh (multimesh) networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. D. Todd ; Commun. Res. Lab., McMaster Univ., Hamilton, Ont., Canada ; E. L. Hahne

This paper introduces the multiaccess mesh (or multimesh) network. Stations are arranged in a two-dimensional (2-D) mesh in which each row and column functions as a conventional linear local-area network (LAN) or metropolitan-area network (MAN) subnetwork. Full connectivity is achieved by enabling stations to merge their row and column subnetworks, under the coordination of a merge control protocol. A two-dimensional token-passing protocol is considered, and a more complex protocol motivated by max-min fairness is also presented. Like conventional LANs and MANs, the multimesh requires no transit routing or store-and-forward buffering. The multimesh is a generalization of the token grid network. Using analysis and simulation, we study the capacity of multimeshes constructed of token rings and slotted rings, under uniform and nonuniform loads. A multimesh can support much higher throughput than conventional linear LAN and MAN networks with the same transmission hardware. Moreover, the multimesh capacity grows with the number of stations, We also present a healing mechanism that ensures full network connectivity regardless of the number of failed stations

Published in:

IEEE/ACM Transactions on Networking  (Volume:5 ,  Issue: 2 )