By Topic

Parametric shape-from-shading by radial basis functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guo-Qing Wei ; Inst. of Robotics & Syst. Dynamics, German Aerosp. Res. Establ., Oberpfaffenhofen, Germany ; Hirzinger, G.

We present a new method of shape from shading by using radial basis functions to parameterize the object depth. The radial basis functions are deformed by adjusting their centers, widths, and weights such that the intensity errors are minimized. The initial centers and widths are arranged hierarchically to speed up convergence and to stabilize the solution. Although the smoothness constraint is used, it can be eventually dropped out without causing instabilities in the solution. An important feature of our parametric shape-from-shading method is that it offers a unified framework for integration of multiple sensory information. We show that knowledge about surface depth and/or surface normals anywhere in the image can be easily incorporated into the shape from shading process. It is further demonstrated that even qualitative knowledge can be used in shape from shading to improve 3D reconstruction. Experimental comparisons of our method with several existing ones are made by using both synthetic and real images. Results show that our solution is more accurate than the others

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:19 ,  Issue: 4 )