By Topic

Inter-subject MR-PET image registration and integration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
K. P. Lin ; Dept. of Electr. Eng., Chung Yuan Univ., Taiwan ; T. S. Chen ; W. J. Yao ; L. C. Wu
more authors

A MR-PET inter-subject image integration technique is developed to provide more precise anatomical location based on a template MR image, and to examine the anatomical variation in sensory-motor stimulation or to obtain cross-subject signal averaging to enhance the delectability of focal brain activity detected by different subject PET images. In this study, a multimodality intra-subject image registration procedure is firstly applied to align MR and PET images of the same subject. The second procedure is to estimate an elastic image transformation that can nonlinearly deform each 3D brain MR image and map them to the template MR image. The estimation procedure of the elastic image transformation is based on a strategy that searches the best local image match to achieve an optimal global image match, iteratively. The final elastic image transformation estimated for each subject will then be used to deform the MR-PET registered PET image. After the nonlinear PET image deformation, MR-PET inter-subject mapping, averaging, and fusing are simultaneously accomplished. The developed technique has been implemented to an UNIX based workstation with Motif window system. The software named Elastic-IRIS has few requirements of user interaction. The registered anatomical location of 10 different subjects has a standard deviation of ~2 mm in the x, y, and z directions. The processing time for one MR-PET inter-subject registration ranged from 20 to 30 minutes on a SUN SPARC-20

Published in:

Nuclear Science Symposium, 1996. Conference Record., 1996 IEEE  (Volume:3 )

Date of Conference:

2-9 Nov 1996