By Topic

On-line fingerprint verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jain, A. ; Dept. of Comput. Sci., Michigan State Univ., East Lansing, MI, USA ; Hong, L. ; Bolle, R.

Fingerprint verification is one of the most reliable personal identification methods. However, manual fingerprint verification is incapable of meeting today's increasing performance requirements. An automatic fingerprint identification system (AFIS) is needed. This paper describes the design and implementation of an online fingerprint verification system which operates in two stages: minutia extraction and minutia matching. An improved version of the minutia extraction algorithm proposed by Ratha et al. (1995), which is much faster and more reliable, is implemented for extracting features from an input fingerprint image captured with an online inkless scanner. For minutia matching, an alignment-based elastic matching algorithm has been developed. This algorithm is capable of finding the correspondences between minutiae in the input image and the stored template without resorting to exhaustive search and has the ability of adaptively compensating for the nonlinear deformations and inexact pose transformations between fingerprints. The system has been tested on two sets of fingerprint images captured with inkless scanners. The verification accuracy is found to be acceptable. Typically, a complete fingerprint verification procedure takes, on an average, about eight seconds on a SPARC 20 workstation. These experimental results show that our system meets the response time requirements of online verification with high accuracy

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:19 ,  Issue: 4 )