Cart (Loading....) | Create Account
Close category search window
 

The effect of Gaussian error in object recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sarachik, K.B. ; Artificial Intelligence Lab., MIT, Cambridge, MA, USA

In model based recognition, the goal is to locate an instance of one or more known objects in an image. The problem is compounded in real images by the presence of clutter, occlusion, and sensor error, which can lead to “false negatives”, failures to recognize the presence of the object, and “false positives”, in which the algorithm incorrectly identifies an occurrence of the object. The probability of either event is affected by parameters within the recognition algorithm, which are almost always chosen in an ad-hoc fashion. The effect of the parameter values on the likelihood that the recognition algorithm will make a mistake are usually not understood explicitly. To address the problem, we explicitly model the noise that occurs in the image. In a typical recognition algorithm, hypotheses about the position of the object are tested against the evidence in the image, and an overall score is assigned to each hypothesis. We use a statistical model to determine what score a correct or incorrect hypothesis is likely to have, and use standard binary hypothesis testing techniques to distinguish correct from incorrect hypotheses. Using this approach, we can compare algorithms and noise models, and automatically choose values for internal system thresholds to minimize the probability of making a mistake

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:19 ,  Issue: 4 )

Date of Publication:

Apr 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.