Cart (Loading....) | Create Account
Close category search window
 

High efficiency midrange wireless power transfer system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Garnica, J. ; Univ. of Florida, Gainesville, FL, USA ; Casanova, J. ; Jenshan Lin

Wireless power transfer systems using near-field magnetic coupling are attractive as they allow power transfer with high efficiency and do not require an unobstructed path between transmitter and receiver. In this work a two coil wireless power transmission system is analyzed, including the driving amplifier, and a demonstration system is built and characterized. The system achieves 76% efficiency for a distance of 1 meter for 40 W transferred power. The effects of changes to the geometry of the system (pitch angle of coils, separation distance) are also examined, and the effect on amplifier topologies analyzed.

Published in:

Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS), 2011 IEEE MTT-S International

Date of Conference:

12-13 May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.