By Topic

Sufficient condition for a communication deadlock and distributed deadlock detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wojcik, B.E. ; Beechcraft Co., Wichita, KS, USA ; Wojcik, Z.M.

The necessary and sufficient condition for deadlock in a distributed system and an algorithm for detection of a distributed deadlock based on the sufficient condition are formulated. The protocol formulated, checks all wait-for contiguous requests in one iteration. A cycle is detected when a query message reaches the initiator. A wait-for cycle is only the necessary condition for the distributed deadlock. A no-deadlock message is expected by the query initiator to infer a deadlock-free situation if at least one wait-for cycle is present. A no-deadlock message is issued by a dependent (query intercessor) that is not waiting-for. No no-deadlock message implies a deadlock, and processes listed in the received query messages are the processes involved in a distributed deadlock. Properties of the protocol are discussed. The authors show that a replication of a requested higher-priority (or older) process can prevent a distributed deadlock (in a continuous deadlock treatment). A replication is shown to recover (in a periodical deadlock handling) a sequence of processes from an indefinite wait-die scheme

Published in:

Software Engineering, IEEE Transactions on  (Volume:15 ,  Issue: 12 )