By Topic

Fluidic vacuum-based biological cell holding device with piezoelectrically induced vibration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bahadur, I.M. ; Dept. of Mech. & Ind. Eng., Univ. of Toronto, Toronto, ON, Canada ; Mills, J.K.

A fluidic biological cell holder device incorporating a piezoelectric actuator has been designed and simulated numerically. Unlike classical cell holding devices, this paper provides a new approach to transfer and immobilize biological cells. The proposed design is based on the unique configuration of fluidic channels to increase cells velocity to overcome friction force while maintaining a low suction flow rate and pressure. In order to enhance cell mobility to the designated locations, a piezoelectric actuator attached at the base of the cell holding device is utilized to provide a detachment force to overcome adhesion force and hydrodynamic forces. The actuator generates a controlled vibration to the cell holding device. Based on problem formulation, the results reveal that the detachment force is determined by both vibration frequency and amplitude. Furthermore, to increase process throughput, the functions of this device can be easily automated using vision control. The validity of this design is demonstrated via numerical simulations using FLOW-3D.

Published in:

Complex Medical Engineering (CME), 2011 IEEE/ICME International Conference on

Date of Conference:

22-25 May 2011