By Topic

Magnetic resonance imaging gridding reconstruction methods with and without density compensation functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
David Moratal ; Univ. Politec. de Valencia, Valencia, Spain ; Ana Valles-Lluch ; Vicent Bodi ; Marijn Eduard Brummer

Reconstruction of magnetic resonance images from data not falling on a Cartesian grid is widely used for fast acquisitions, and it is a Fourier inversion problem typically solved using convolution interpolation, also known as gridding. This work presents a comparison between two gridding reconstruction methods to reconstruct magnetic resonance images from acquisitions using spiral trajectories through k-space. One method (grid-driven) is not based on a density compensation function while the other one (Direct Summation) uses Voronoi cells for the determination of the necessary areas to estimate the corresponding density compensation function. Both methods have been applied to the same image to see the reconstruction quality of each method. Both methods have correctly reconstructed the original image using only 13.73% of the original full-grid data from a Cartesian trajectory.

Published in:

IEEE Latin America Transactions  (Volume:9 ,  Issue: 1 )