Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Fault location and classification in distribution systems using clark transformation and neural network [abstract only]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Torabi, S.M. ; Semnan Electrical Power Distribution Company, Iran

In this paper, an accurate method for determination of fault location and fault type in power distribution systems by neural network is proposed. This method uses neural network to classify and locate normal and composite types of faults as phase to earth, two phases to earth, phase to phase. Also this method can distinguish three phase short circuit from normal network position. In the presented method, neural network is trained by αβ space vector parameters. These parameters are obtained using clarke transformation. Simulation results are presented in the MATLAB software. Two neural networks (MLP and RBF) are investigated and their results are compared with each other. The accuracy and benefit of the proposed method for determination of fault type and location in distribution power systems has been shown in simulation results.

Published in:

Electrical Power Distribution Networks (EPDC), 2011 16th Conference on

Date of Conference:

19-20 April 2011