By Topic

Cooperative Adaptive Cruise Control: A Reinforcement Learning Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Desjardins, C. ; Dept. of Comput. Sci. & Software Eng., Laval Univ., Quebec City, QC, Canada ; Chaib-draa, B.

Recently, improvements in sensing, communicating, and computing technologies have led to the development of driver-assistance systems (DASs). Such systems aim at helping drivers by either providing a warning to reduce crashes or doing some of the control tasks to relieve a driver from repetitive and boring tasks. Thus, for example, adaptive cruise control (ACC) aims at relieving a driver from manually adjusting his/her speed to maintain a constant speed or a safe distance from the vehicle in front of him/her. Currently, ACC can be improved through vehicle-to-vehicle communication, where the current speed and acceleration of a vehicle can be transmitted to the following vehicles by intervehicle communication. This way, vehicle-to-vehicle communication with ACC can be combined in one single system called cooperative adaptive cruise control (CACC). This paper investigates CACC by proposing a novel approach for the design of autonomous vehicle controllers based on modern machine-learning techniques. More specifically, this paper shows how a reinforcement-learning approach can be used to develop controllers for the secure longitudinal following of a front vehicle. This approach uses function approximation techniques along with gradient-descent learning algorithms as a means of directly modifying a control policy to optimize its performance. The experimental results, through simulation, show that this design approach can result in efficient behavior for CACC.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:12 ,  Issue: 4 )