Cart (Loading....) | Create Account
Close category search window
 

Clustering of Detected Changes in High-Resolution Satellite Imagery Using a Stabilized Competitive Agglomeration Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Sjahputera, O. ; Electr. & Comput. Eng. Dept., Univ. of Missouri, Columbia, MO, USA ; Scott, G.J. ; Claywell, B. ; Klaric, M.N.
more authors

The Geospatial Change Detection and exploitation (GeoCDX) is a fully automated system for detection and exploitation of change between multitemporal high-resolution satellite and airborne images. Overlapping multitemporal images are first organized into 256 m × 256 m tiles in a global grid reference system. The system quantifies the overall amount of change in a given tile with a tile change score as an aggregation of pixel-level changes. The tiles are initially ranked by these change scores for retrieval, review, and exploitation in a Web-based application. However, the ranking does not account for the wide variety of change types that are typically observed in the top-ranked change tiles. To automatically organize the wide variety of change patterns observed in multitemporal high-resolution imagery, we perform tile clustering using the competitive agglomeration (CA) algorithm stabilized using the fuzzy c-means (FCM) algorithm. Each resulting cluster contains tiles with a visually similar type of change. By visual inspection of these tile clusters, GeoCDX users can quickly find certain types of change without having to sift through a large number of tiles initially organized solely by their tile change score, thereby reducing the time it takes for users to discover and exploit the change pattern(s) of greatest interest to a given application (e.g., urban growth, disaster assessment, facility monitoring, etc.). The tile clusters also provide a high-level overview of the various types of change that occur between the two observations. This overview is compared with a similar yet more limited view offered by a relevance feedback tool that requires a user to select sample tiles for use as samples in the reranking process.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 12 )

Date of Publication:

Dec. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.