Cart (Loading....) | Create Account
Close category search window
 

Noise Analysis in Ligand-Binding Reception for Molecular Communication in Nanonetworks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pierobon, M. ; Broadband Wireless Networking Lab., Georgia Inst. of Technol., Atlanta, GA, USA ; Akyildiz, I.F.

Molecular communication (MC) will enable the exchange of information among nanoscale devices. In this novel bio-inspired communication paradigm, molecules are employed to encode, transmit and receive information. In the most general case, these molecules are propagated in the medium by means of free diffusion. An information theoretical analysis of diffusion-based MC is required to better understand the potential of this novel communication mechanism. The study and the modeling of the noise sources is of utmost importance for this analysis. The objective of this paper is to provide a mathematical study of the noise at the reception of the molecular information in a diffusion-based MC system when the ligand-binding reception is employed. The reference diffusion-based MC system for this analysis is the physical end-to-end model introduced in a previous work by the same authors, where the reception process is realized through ligand-binding chemical receptors. The reception noise is modeled in this paper by following two different approaches, namely, through the ligand-receptor kinetics and through the stochastic chemical kinetics. The ligand-receptor kinetics allows to simulate the random perturbations in the chemical processes of the reception, while the stochastic chemical kinetics provides the tools to derive a closed-form solution to the modeling of the reception noise. The ligand-receptor kinetics model is expressed through a block scheme, while the stochastic chemical kinetics results in the characterization of the reception noise using stochastic differential equations. Numerical results are provided to demonstrate that the analytical formulation of the reception noise in terms of stochastic chemical kinetics is compliant with the reception noise behavior resulting from the ligand-receptor kinetics simulations.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 9 )

Date of Publication:

Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.