By Topic

Hybrid model predictive control using time-instant optimization for the Rhine-Meuse Delta

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
van Ekeren, H. ; Delft Center for Syst. & Control, Delft Univ. of Technol., Delft, Netherlands ; Negenborn, R.R. ; van Overloop, P.J. ; De Schutter, B.

In order to provide safety against high sea water levels, in many low-lying countries on the one hand dunes are maintained at a certain safety level and dikes are built, while on the other hand large control structures that can be controlled dynamically are constructed. Currently, these structures are often operated purely locally, without coordination on actions between different structures. Automatically coordinating the actions is particularly difficult, since open water systems are complex, hybrid systems, in the sense that continuous dynamics (e.g., the evolution of the water levels) are mixed with discrete events (e.g., the opening or closing of barriers). In low-lands, this complexity is increased further due to bi-directional water flows resulting from backwater effects and interconnectivity of flows in different parts of river deltas. In this paper, we propose a model predictive control (MPC) approach that is aimed at automatically coordinating the different actions. Hereby, the hybrid nature is explicitly addressed. In order to reduce the computational effort required to solve the hybrid MPC problem we propose to use TIO-MPC, where TIO stands for time-instant optimization. A simulation study illustrates the potential of the proposed controller in comparison with the current setup in the Rhine-Meuse delta in The Netherlands.

Published in:

Networking, Sensing and Control (ICNSC), 2011 IEEE International Conference on

Date of Conference:

11-13 April 2011