By Topic

Feature vector extraction by using empirical mode decomposition for power quality disturbances

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Turgay Yalcin ; Electrical - Electronic Eng. Department, Ondokuz Mayis University, Samsun - Turkey ; Okan Ozgonenel ; Unal Kurt

This work presents a relatively new method known as empirical mode decomposition (EMD) for power quality disturbances. In a comprehensive and wider range of approaches and engineering activities, there is a increasing concern for power system disturbances monitoring techniques. The need of increasing performances in terms of accuracy and computation speed is permanently demanding new efficient processing techniques on power system visualization. For system monitoring, feature extraction of a disturbed power signal provides information that helps to detect and diagnose the responsible fault for power quality disturbance. Traditionally, monitoring spectral and harmonic analysis of dynamic systems is based on Fourier based transforms and the wavelets. The Fourier transform usually has been used in the past for analysis of stationary and periodic signals. Qualification to providing a more accurate `real-time' demonstration of a signal without any artifacts imposed by the non-locally adaptive limitations of the fast Fourier transform (FFT) and wavelet processing. In this work, the first step of Hilbert-Huang transform (HHT), EMD, has been regarded as a powerful tool for adaptive analysis of non-linear and non-stationary signals.

Published in:

Environment and Electrical Engineering (EEEIC), 2011 10th International Conference on

Date of Conference:

8-11 May 2011