By Topic

Cost-efficient integration of electric vehicles with the power grid by means of smart charging strategies and integrated on-board chargers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gerald Glanzer ; Department of Electronics, FH JOANNEUM - University of Applied Sciences, Kapfenberg, Austria ; Thyagesh Sivaraman ; Jose Ignacio Buffalo ; Martin Kohl
more authors

Electric vehicles (EVs) are new type of additional load on the power grid. The change of the load profile depends on the penetration level of EVs as well as on the used charging strategies. State-of-the-art charging strategies such as dumb charging and dual tariff charging are not the appropriate solutions for charging EVs. Both strategies causes peak demands which could induce violations of the power grid constrains. Hence, smart charging is necessary to reduce peak demands and to realise valley-filling. Furthermore smart charging in many cases is based on a novel smart power grid infrastructure. The major objectives of smart charging are the minimisation of the electricity costs of consumers and the cost-efficient update of the power grid infrastructure. In addition, all EVs have to be equipped with a bidirectional on-board charger which enables vehicle-to-grid (V2G) capability. This type of charger consists of a combined AC/DC rectifier and DC/AC inverter. The most efficient solution is to integrate the charger in the already existing propulsion machine inverter. The major objectives of an integrated on-board charger are the minimisations of manufacturing costs, maintenance costs and weight of the EV. In this paper several smart charging strategies as well as charger topologies are presented and assessed.

Published in:

Environment and Electrical Engineering (EEEIC), 2011 10th International Conference on

Date of Conference:

8-11 May 2011