By Topic

Automatic thresholding for frame-repositioning using external tracking in PET brain imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Olesen, O.V. ; Siemens Healthcare, Ballerup, Denmark ; Keller, S.H. ; Sibomana, M. ; Larsen, R.
more authors

Motion correction (MC) in positron emission tomography (PET) brain imaging become of higher importance with increasing scanner resolution. Several motion correction methods have been suggested and so far the Polaris Vicra tracking system has been the preferred one for motion registration. We present an automated algorithm for dividing PET acquisitions into subframes based on the registered head motion to correct for intra-frame motion with the frame repositioning MC method. The method is tested on real patient data (five 11C-SB studies and five 11C-PIB studies) and compared with an image based registration method (AIR). Quantitative evaluation was done using a correlation measure. The study shows that MC improves the correlation of the PET images and that AIR performed slightly better than the Polaris Vicra. We found significant intra-frame motion of 1-5 mm in 9 frames but the correlation was not significantly improved using intra-frame MC.

Published in:

Nuclear Science Symposium Conference Record (NSS/MIC), 2010 IEEE

Date of Conference:

Oct. 30 2010-Nov. 6 2010