Cart (Loading....) | Create Account
Close category search window
 

Studies of the pattern of light emitted from waveshifting, scintillating, and waveguide fibers used in detectors for particle physics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Baumbaugh, B. ; Univ. of Notre Dame, Notre Dame, IN, USA ; Conti, J. ; Daily, K. ; Heering, A.
more authors

Scintillating, waveshifting, and waveguide fibers are used as particle detectors and light detection and transport elements in particle physics experiments. A study of light emission from such structures is being carried out for the Compact Muon Solenoid (CMS) experiment at CERN. For CMS, the fibers used are polystyrene core with a double-cladding and a diameter of 940 microns and lengths of up to several meters. Currently, the light produced and transported by such structures is detected by a conventional photo-detectors called hybrid photodiodes (HPD). The experiment is planning to replace the HPDs with a new photo-detectors known as a Silicon Photomultipliers (SiPM) with the possibility of each fiber having its own SiPM element for readout. Due to the thermal and electrical characteristics of SiPMs, and specifically their high thermal noise rate, it is best to keep the cross sectional area of the SiPM as small as possible. When light exits a fiber there is a distribution of the photons at various angles caused by: the differences in index of refraction of the core (n=1.59) and outer cladding (n=1.43) of the fiber; how and where in the fiber the initial light was created and the dominant transmission characteristics of the fiber/waveguide. This light distribution sets the size and placement of the SiPM devices. To study this, experimental measurements are being carried out using waveshifting and clear optical waveguide fibers that are used in CMS. Light is produced within such fiber core by exciting them through their cladding using UV light emitting diodes (LEDs). The LED light penetrates into the fiber and is waveshifted. On one end (called the readout end) is placed up against a fiber-optically-coupled CCD camera. The opposite end is either mirrored (with aluminum) or unmirrored and also read out using another CCD. Initial studies of attenuation and the profile of emergent light are discussed.

Published in:

Nuclear Science Symposium Conference Record (NSS/MIC), 2010 IEEE

Date of Conference:

Oct. 30 2010-Nov. 6 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.