By Topic

Automated Delineation of Lung Tumors in PET Images Based on Monotonicity and a Tumor-Customized Criterion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ballangan, C. ; Biomed. & Multimedia Inf. Technol. Res. Group, Univ. of Sydney, Sydney, NSW, Australia ; Xiuying Wang ; Fulham, M. ; Eberl, S.
more authors

Reliable automated or semiautomated lung tumor delineation methods in positron emission tomography should provide accurate tumor boundary definition and separation of the lung tumor from surrounding tissue or “hot spots” that have similar intensities to the lung tumor. We propose a tumor-customized downhill (TCD) method to achieve these objectives. Our approach includes: 1) automatic formulation of a tumor-customized criterion to improve tumor boundary definition, 2) a monotonic property of the standardized uptake value (SUV) of tumors to separate the tumor from adjacent regions of increased metabolism (“hot spot”), and 3) accounts for tumor heterogeneity. Three simulated lesions and 30 PET-CT studies, grouped into “simple” and “complex” groups, were used for evaluation. Our main findings are that TCD, when compared to the threshold based on 40% and 50% maximum SUV, adaptive threshold, Fuzzy c-means, and watershed techniques achieved the highest Dice's similarity coefficient average for simulation data (0.73) and “complex” group (0.71); the least volumetric error in the “simple” (1.76 mL) and the “complex” group (14.59 mL); and TCD solves the problem of leakage into adjacent tissues when many other techniques fail.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:15 ,  Issue: 5 )