By Topic

Quantitative biological studies enabled by robust cell tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Padfield, D. ; GE Global Res., Niskayuna, NY, USA ; Rittscher, J. ; Roysam, B.

A growing number of screening applications require the automated monitoring of cell populations enabled by cell segmentation and tracking algorithms in a high-throughput, high-content environment. Building upon the tracks generated by such algorithms, we derive biologically relevant features and demonstrate a range of biological studies made possible by such quantitative measures. In the first, we introduce a combination of quantitative features that characterize cell apoptosis and arrest. In the second, we automatically measure the effect of motility-promoting serums. In the third, we show that proper dosage levels can be automatically determined for studying protein translocations. These results provide large-scale quantitative validation of biological experiments and demonstrate that our framework provides a valuable tool for high-throughout biological studies.

Published in:

Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on

Date of Conference:

March 30 2011-April 2 2011