By Topic

A biomedical image retrieval framework based on classification-driven image filtering and similarity fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rahman, M.M. ; U.S. Nat. Libr. of Med., Nat. Institutes of Health, Bethesda, MD, USA ; Antani, S.K. ; Thoma, G.R.

This paper presents a classification-driven biomedical image retrieval approach based on multi-class support vector machine (SVM) and uses image filtering and similarity fusion. In this framework, the probabilistic outputs of the SVM are exploited to reduce the search space for similarity matching. In addition, the predicted category of the query image is used for linear combination of similarity. The method is evaluated on a diverse collection of 5000 biomedical images of different modalities, body parts, and orientations and shows a halving in computation time (efficiency) and 10% to 15% improvement in precision at each recall level (effectiveness).

Published in:

Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on

Date of Conference:

March 30 2011-April 2 2011