By Topic

Highly undersampled MRI using adaptive sparse representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saiprasad Ravishankar ; Department of Electrical and Computer Engineering and the Coordinated Science Laboratory, University of Illinois, Urbana-Champaign, 61801, USA ; Yoram Bresler

Compressed sensing (CS) exploits the sparsity of MR images to enable accurate reconstruction from undersampled k-space data. Recent CS methods have employed analytical sparsifying transforms such as wavelets and finite differences. In this paper, we propose a novel framework for adaptively learning the sparsifying transform (dictionary), and reconstructing the image simultaneously from highly undersampled k-space data. The sparsity is enforced on overlapping image patches. The proposed alternating reconstruction algorithm learns the sparsifying dictionary, and uses it to remove aliasing and noise in one step, and subsequently restores and fills-in the k-space data in the other step. Experimental results demonstrate dramatic improvements in reconstruction error using the proposed adaptive dictionary as compared to previous CS methods.

Published in:

2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro

Date of Conference:

March 30 2011-April 2 2011