By Topic

A unified approach to expectation-maximization and level set segmentation applied to stem cell and brain MRI images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lowry, N. ; Massachusetts Inst. of Technol., Cambridge, MA, USA ; Mangoubi, R. ; Desai, M. ; Marzouk, Y.
more authors

We present a unified approach to Expectation-Maximization (EM) and Level Set image segmentation that combines the advantages of the two algorithms via a geometric prior that encourages local classification similarity. Compared to level sets, our method increases the information returned by providing probabilistic soft decisions, is easily extensible to multiple regions, and does not require solving Partial Differential Equations (PDEs). Relative to the basic mixture model EM, the unified algorithm improves robustness to noise while smoothing class transitions. We illustrate the versatility and advantages of the algorithm on two real-life problems: segmentation of induced pluripotent stem cell (iPSC) colonies in phase contrast microscopic images and information recovery from brain magnetic resonance images (MRI).

Published in:

Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on

Date of Conference:

March 30 2011-April 2 2011